Exercise 3.4.11

Consider the nonhomogeneous heat equation (with a steady heat source):

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}+g(x)
$$

Solve this equation with the initial condition

$$
u(x, 0)=f(x)
$$

and the boundary conditions

$$
u(0, t)=0 \quad \text { and } \quad u(L, t)=0
$$

Assume that a continuous solution exists (with continuous derivatives). [Hints: Expand the solution as a Fourier sine series (i.e., use the method of eigenfunction expansion). Expand $g(x)$ as a Fourier sine series. Solve for the Fourier sine series of the solution. Justify all differentiations with respect to x.]

Solution

In order for the homogeneous Dirichlet boundary conditions to be satisfied, we assume the solution has the form of a Fourier sine series.

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} B_{n}(t) \sin \frac{n \pi x}{L} \tag{1}
\end{equation*}
$$

Since u is continuous, this is justified. Apply the initial condition now to determine $B_{n}(0)$.

$$
u(x, 0)=\sum_{n=1}^{\infty} B_{n}(0) \sin \frac{n \pi x}{L}=f(x) \quad \rightarrow \quad B_{n}(0)=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

This formula for $B_{n}(0)$ will be needed later. Assuming $\partial u / \partial t$ is continuous, term-by-term differentiation with respect to t is valid.

$$
\frac{\partial u}{\partial t}=\sum_{n=1}^{\infty} B_{n}^{\prime}(t) \sin \frac{n \pi x}{L}
$$

Because u is continuous and $u(0, t)=u(L, t)=0$, differentiation of the sine series with respect to x is valid.

$$
\frac{\partial u}{\partial x}=\sum_{n=1}^{\infty} \frac{n \pi}{L} B_{n}(t) \cos \frac{n \pi x}{L}
$$

$\partial u / \partial x$ is continuous, so differentiation of this cosine series with respect to x is valid.

$$
\frac{\partial^{2} u}{\partial x^{2}}=\sum_{n=1}^{\infty}\left(-\frac{n^{2} \pi^{2}}{L^{2}}\right) B_{n}(t) \sin \frac{n \pi x}{L}
$$

Substitute these infinite series into the PDE.

$$
\sum_{n=1}^{\infty} B_{n}^{\prime}(t) \sin \frac{n \pi x}{L}=k \sum_{n=1}^{\infty}\left(-\frac{n^{2} \pi^{2}}{L^{2}}\right) B_{n}(t) \sin \frac{n \pi x}{L}+g(x)
$$

Bring them both to the left side.

$$
\sum_{n=1}^{\infty} B_{n}^{\prime}(t) \sin \frac{n \pi x}{L}+k \sum_{n=1}^{\infty}\left(\frac{n^{2} \pi^{2}}{L^{2}}\right) B_{n}(t) \sin \frac{n \pi x}{L}=g(x)
$$

Combine them and factor the summand.

$$
\sum_{n=1}^{\infty}\left[B_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} B_{n}(t)\right] \sin \frac{n \pi x}{L}=g(x)
$$

To obtain the quantity in square brackets, multiply both sides by $\sin \frac{p \pi x}{L}$, where p is an integer,

$$
\sum_{n=1}^{\infty}\left[B_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} B_{n}(t)\right] \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L}=g(x) \sin \frac{p \pi x}{L}
$$

and then integrate both sides with respect to x from 0 to L.

$$
\int_{0}^{L} \sum_{n=1}^{\infty}\left[B_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} B_{n}(t)\right] \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L} d x=\int_{0}^{L} g(x) \sin \frac{p \pi x}{L} d x
$$

Split up the integral on the left and bring the constants in front.

$$
\sum_{n=1}^{\infty}\left[B_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} B_{n}(t)\right] \int_{0}^{L} \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L} d x=\int_{0}^{L} g(x) \sin \frac{p \pi x}{L} d x
$$

Because the sine functions are orthogonal, this integral on the left is zero if $n \neq p$. Only if $n=p$ is it nonzero.

$$
\left[B_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} B_{n}(t)\right] \int_{0}^{L} \sin ^{2} \frac{n \pi x}{L} d x=\int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x
$$

Evaluate the integral on the left.

$$
\left[B_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} B_{n}(t)\right] \frac{L}{2}=\int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x
$$

Multiply both sides by $2 / L$.

$$
B_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} B_{n}(t)=\frac{2}{L} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x
$$

This is a first-order linear inhomogeneous ODE, so it can be solved with an integrating factor I.

$$
I=\exp \left(\int^{t} \frac{k n^{2} \pi^{2}}{L^{2}} d x\right)=\exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right)
$$

Multiply both sides of the ODE by I.

$$
\exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right) B_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right) B_{n}(t)=\left[\frac{2}{L} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x\right] \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right)
$$

The left side can be written as $d / d t\left(I B_{n}\right)$ by the product rule.

$$
\frac{d}{d t}\left[\exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right) B_{n}(t)\right]=\left[\frac{2}{L} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x\right] \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right)
$$

Integrate both sides with respect to t.

$$
\begin{aligned}
\exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right) B_{n}(t) & =\int^{t}\left[\frac{2}{L} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x\right] \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} s\right) d s+C \\
& =\left[\frac{2}{L} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x\right] \int^{t} \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} s\right) d s+C \\
& =\left[\frac{2}{L} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x\right] \frac{L^{2}}{k n^{2} \pi^{2}} \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right)+C \\
& =\left[\frac{2 L}{k n^{2} \pi^{2}} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x\right] \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right)+C
\end{aligned}
$$

Solve for $B_{n}(t)$.

$$
B_{n}(t)=\left[\frac{2 L}{k n^{2} \pi^{2}} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x\right]+C \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right)
$$

Set $t=0$ and use the formula found in the beginning for $B_{n}(0)$ to determine C.

$$
\begin{aligned}
B_{n}(0) & =\left[\frac{2 L}{k n^{2} \pi^{2}} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x\right]+C=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x \\
C & =\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x-\left[\frac{2 L}{k n^{2} \pi^{2}} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x\right]
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
B_{n}(t) & =\left[\frac{2 L}{k n^{2} \pi^{2}} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x\right]+\left\{\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x-\left[\frac{2 L}{k n^{2} \pi^{2}} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x\right]\right\} \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right) \\
& =\left[\frac{2 L}{k n^{2} \pi^{2}} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x\right]\left[1-\exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right)\right]+\left[\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x\right] \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right),
\end{aligned}
$$

and the solution to the PDE is

$$
\begin{aligned}
u(x, t)= & \sum_{n=1}^{\infty} B_{n}(t) \sin \frac{n \pi x}{L} \\
= & \sum_{n=1}^{\infty}\left\{\left[\frac{2 L}{k n^{2} \pi^{2}} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x\right]\left[1-\exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right)\right]\right. \\
& \left.+\left[\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x\right] \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right)\right\} \sin \frac{n \pi x}{L} .
\end{aligned}
$$

